skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fejer, M_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerical modeling of ultrashort pulse propagation is important for designing and understanding the underlying dynamical processes in devices that take advantage of highly nonlinear interactions in dispersion-engineered optical waveguides. Once the spectral bandwidth reaches an octave or more, multiple types of nonlinear polarization terms can drive individual optical frequencies. This issue is particularly prominent inχ(2)devices where all harmonics of the input pulse are generated and there can be extensive spectral overlap between them. Single-envelope approaches to pulse propagation have been developed to address these complexities; this has led to a significant mismatch between the strategies used to analyze moderate-bandwidth devices (usually involving multi-envelope models) and those used to analyze octave-spanning devices (usually involving models with one envelope per waveguide mode). Here we unify the different strategies by developing a common framework, applicable to any optical bandwidth, that allows for a side-by-side comparison between single- and multi-envelope models. We include bothχ(2)andχ(3)interactions in these models, with emphasis onχ(2)interactions. We show a detailed example based on recent supercontinuum generation experiments in a thin-film LiNbO3on sapphire quasi-phase-matching waveguide. Our simulations of this device show good agreement between single- and multi-envelope models in terms of the frequency comb properties of the electric field, even for multi-octave-spanning spectra. Building on this finding, we explore how the multi-envelope approach can be used to develop reduced models that help build physical insights about new ultrafast photonics devices enabled by modern dispersion-engineered waveguides, and discuss practical considerations for the choice of such models. More broadly, we give guidelines on the pros and cons of the different modeling strategies in the context of device design, numerical efficiency, and accuracy of the simulations. 
    more » « less
  2. Over the last few decades, nonlinear optics has become significantly more nonlinear, traversing nearly a billionfold improvement in energy efficiency, with ultrafast nonlinear nanophotonics in particular emerging as a frontier for combining both spatial and temporal engineering. At present, cutting-edge experiments in nonlinear nanophotonics place us just above themesoscopicregime, where a few hundred photons suffice to trigger highly nonlinear dynamics. In contrast to classical or deep-quantum optics, the mesoscale is characterized by dynamical interactions between mean-field, Gaussian, and non-Gaussian quantum features, all within a close hierarchy of scales. When combined with the inherent multimode complexity of optical fields, such hybrid quantum-classical dynamics present theoretical, experimental, and engineering challenges to the contemporary framework of quantum optics. In this review, we highlight the unique physics that emerges in multimode nonlinear optics at the mesoscale and outline key principles for exploiting both classical and quantum features to engineer novel functionalities. We briefly survey the experimental landscape and draw attention to outstanding technical challenges in materials, dispersion engineering, and device design for accessing mesoscopic operation. Finally, we speculate on how these capabilities might usher in some new paradigms in quantum photonics, from quantum-augmented information processing to nonclassical-light-driven dynamics and phenomena to all-optical non-Gaussian measurement and sensing. The physics unlocked at the mesoscale present significant challenges and opportunities in theory and experiment alike, and this review is intended to serve as a guide to navigating this new frontier in ultrafast quantum nonlinear optics. 
    more » « less
  3. We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments. Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest that future realization based on this approach could enable supercontinuum generation with orders of magnitude less energy than current state-of-the-art devices. 
    more » « less
  4. Brownian thermal noise as a result of mechanical loss in optical coatings will become the dominant source of noise at the most sensitive frequencies of ground-based gravitational-wave detectors. Experiments found, however, that a candidate material, amorphous Ta2O5, is unable to form an ultrastable glass and, consequently, to yield a film with significantly reduced mechanical loss through elevated-temperature deposition alone. X-ray scattering PDF measurements are carried out on films deposited and subsequently annealed at various temperatures. Inverse atomic modeling is used to analyze the short and medium range features in the atomic structure of these films. Furthermore, in silico deposition simulations of Ta2O5 are carried out at various substrate temperatures and an atomic level analysis of the growth at high temperatures is presented. It is observed that upon elevated-temperature deposition, short range features remain identical, whereas medium range order increases. After annealing, however, both the short and medium range orders of films deposited at different substrate temperatures are nearly identical. A discussion on the surface diffusion and glass transition temperatures indicates that future pursuits of ultrastable low-mechanical-loss films through elevated temperature deposition should focus on materials with a high surface mobility, and/or lower glass transition temperatures in the range of achievable deposition temperatueres. 
    more » « less
  5. Silicon is a common material for photonics due to its favorable optical properties in the telecom and mid-wave IR bands, as well as compatibility with a wide range of complementary metal–oxide semiconductor (CMOS) foundry processes. Crystalline inversion symmetry precludes silicon from natively exhibiting second-order nonlinear optical processes. In this work, we build on recent works in silicon photonics that break this material symmetry using large bias fields, thereby enablingχ(2)interactions. Using this approach, we demonstrate both second-harmonic generation (with a normalized efficiency of 0.20%W−1cm−2) and, to our knowledge, the first degenerateχ(2)optical parametric amplifier (with an estimated normalized gain of 0.6dBW−1/2cm−1) using silicon-on-insulator waveguides fabricated in a CMOS-compatible commercial foundry. We expect this technology to enable the integration of novel nonlinear optical devices such as optical parametric amplifiers, oscillators, and frequency converters into large-scale, hybrid photonic–electronic systems by leveraging the extensive ecosystem of CMOS fabrication. 
    more » « less
  6. We study the emergence of non-Gaussian quantum features in pulsed squeezed light generation with a mesoscopic number (i.e., dozens to hundreds) of pump photons. Due to the strong optical nonlinearities necessarily involved in this regime, squeezing occurs alongside significant pump depletion, compromising the predictions made by conventional semiclassical models for squeezing. Furthermore, nonlinear interactions among multiple frequency modes render the system dynamics exponentially intractable in naïve quantum models, requiring a more sophisticated modeling framework. To this end, we construct a nonlinear Gaussian approximation to the squeezing dynamics, defining a “Gaussian interaction frame” in which non-Gaussian quantum dynamics can be isolated and concisely described using a few dominant (i.e., principal) supermodes. Numerical simulations of our model reveal non-Gaussian distortions of squeezing in the mesoscopic regime, largely associated with signal-pump entanglement. We argue that state of the art in nonlinear nanophotonics is quickly approaching this regime, providing an all-optical platform for experimental studies of the semiclassical-to-quantum transition in a rich paradigm of coherent, multimode nonlinear dynamics. Mesoscopic pulsed squeezing, thus, provides an intriguing case study of the rapid rise in dynamic complexity associated with semiclassical-to-quantum crossover, which we view as a correlate of the emergence of new information processing capacities in the quantum regime. 
    more » « less
  7. Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1–2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices. 
    more » « less
  8. Existing nonlinear-optic implementations of pure, unfiltered heralded single-photon sources do not offer the scalability required for densely integrated quantum networks. Additionally, lithium niobate has hitherto been unsuitable for such use due to its material dispersion. We engineer the dispersion and the quasi-phasematching conditions of a waveguide in the rapidly emerging thin-film lithium niobate platform to generate spectrally separable photon pairs in the telecommunications band. Such photon pairs can be used as spectrally pure heralded single-photon sources in quantum networks. We estimate a heralded-state spectral purity of >94% based on joint spectral intensity measurements. Further, a joint spectral phase-sensitive measurement of the unheralded time-integrated second-order correlation function yields a heralded-state purity of ( 86 ±<#comment/> 5 ) %<#comment/>
    more » « less
  9. Periodically poled thin-film lithium niobate (TFLN) waveguides have emerged as a leading platform for highly efficient frequency conversion in the near-infrared. However, the commonly used silica bottom-cladding results in high absorption loss at wavelengths beyond 2.5 µm. In this work, we demonstrate efficient frequency conversion in a TFLN-on-sapphire platform, which features high transparency up to 4.5 µm. In particular, we report generating mid-infrared light up to 3.66 µm via difference-frequency generation of a fixed 1 µm source and a tunable telecom source, with normalized efficiencies up to 200 %<#comment/> / W c m 2 . These results show TFLN-on-sapphire to be a promising platform for integrated nonlinear nanophotonics in the mid-infrared. 
    more » « less